Copied to
clipboard

G = C324F7order 378 = 2·33·7

2nd semidirect product of C32 and F7 acting via F7/C7⋊C3=C2

metabelian, supersoluble, monomial, A-group

Aliases: C324F7, C3⋊(C3⋊F7), C211(C3×S3), (C3×C21)⋊4C6, C3⋊D213C3, C7⋊(C3×C3⋊S3), C7⋊C3⋊(C3⋊S3), (C3×C7⋊C3)⋊3S3, (C32×C7⋊C3)⋊2C2, SmallGroup(378,51)

Series: Derived Chief Lower central Upper central

C1C3×C21 — C324F7
C1C7C21C3×C21C32×C7⋊C3 — C324F7
C3×C21 — C324F7
C1

Generators and relations for C324F7
 G = < a,b,c,d | a3=b3=c7=d6=1, ab=ba, ac=ca, dad-1=a-1, bc=cb, dbd-1=b-1, dcd-1=c5 >

Subgroups: 540 in 64 conjugacy classes, 20 normal (8 characteristic)
C1, C2, C3, C3, S3, C6, C7, C32, C32, D7, C3×S3, C3⋊S3, C7⋊C3, C7⋊C3, C21, C33, F7, D21, C3×C3⋊S3, C3×C7⋊C3, C3×C7⋊C3, C3×C21, C3⋊F7, C3⋊D21, C32×C7⋊C3, C324F7
Quotients: C1, C2, C3, S3, C6, C3×S3, C3⋊S3, F7, C3×C3⋊S3, C3⋊F7, C324F7

Character table of C324F7

 class 123A3B3C3D3E3F3G3H3I3J3K3L3M3N6A6B721A21B21C21D21E21F21G21H
 size 16322227714141414141414146363666666666
ρ1111111111111111111111111111    trivial
ρ21-111111111111111-1-1111111111    linear of order 2
ρ31-11111ζ32ζ3ζ3ζ32ζ32ζ32ζ3ζ3ζ3ζ32ζ65ζ6111111111    linear of order 6
ρ41-11111ζ3ζ32ζ32ζ3ζ3ζ3ζ32ζ32ζ32ζ3ζ6ζ65111111111    linear of order 6
ρ5111111ζ32ζ3ζ3ζ32ζ32ζ32ζ3ζ3ζ3ζ32ζ3ζ32111111111    linear of order 3
ρ6111111ζ3ζ32ζ32ζ3ζ3ζ3ζ32ζ32ζ32ζ3ζ32ζ3111111111    linear of order 3
ρ720-1-1-12222-1-12-1-1-1-1002-12-1-1-1-1-12    orthogonal lifted from S3
ρ820-1-12-122-12-1-1-1-12-1002-1-122-1-1-1-1    orthogonal lifted from S3
ρ9202-1-1-122-1-12-12-1-1-1002-1-1-1-1-122-1    orthogonal lifted from S3
ρ1020-12-1-122-1-1-1-1-12-120022-1-1-12-1-1-1    orthogonal lifted from S3
ρ1120-12-1-1-1--3-1+-3ζ65ζ6ζ6ζ6ζ65-1+-3ζ65-1--30022-1-1-12-1-1-1    complex lifted from C3×S3
ρ1220-1-1-12-1+-3-1--3-1--3ζ65ζ65-1+-3ζ6ζ6ζ6ζ65002-12-1-1-1-1-12    complex lifted from C3×S3
ρ13202-1-1-1-1+-3-1--3ζ6ζ65-1+-3ζ65-1--3ζ6ζ6ζ65002-1-1-1-1-122-1    complex lifted from C3×S3
ρ1420-12-1-1-1+-3-1--3ζ6ζ65ζ65ζ65ζ6-1--3ζ6-1+-30022-1-1-12-1-1-1    complex lifted from C3×S3
ρ1520-1-12-1-1--3-1+-3ζ65-1--3ζ6ζ6ζ65ζ65-1+-3ζ6002-1-122-1-1-1-1    complex lifted from C3×S3
ρ1620-1-12-1-1+-3-1--3ζ6-1+-3ζ65ζ65ζ6ζ6-1--3ζ65002-1-122-1-1-1-1    complex lifted from C3×S3
ρ17202-1-1-1-1--3-1+-3ζ65ζ6-1--3ζ6-1+-3ζ65ζ65ζ6002-1-1-1-1-122-1    complex lifted from C3×S3
ρ1820-1-1-12-1--3-1+-3-1+-3ζ6ζ6-1--3ζ65ζ65ζ65ζ6002-12-1-1-1-1-12    complex lifted from C3×S3
ρ19606666000000000000-1-1-1-1-1-1-1-1-1    orthogonal lifted from F7
ρ2060-3-36-3000000000000-11+21/21+21/2-1-11-21/21-21/21+21/21-21/2    orthogonal lifted from C3⋊F7
ρ2160-3-3-36000000000000-11+21/2-11+21/21-21/21-21/21+21/21-21/2-1    orthogonal lifted from C3⋊F7
ρ22606-3-3-3000000000000-11-21/21+21/21+21/21-21/21+21/2-1-11-21/2    orthogonal lifted from C3⋊F7
ρ2360-3-3-36000000000000-11-21/2-11-21/21+21/21+21/21-21/21+21/2-1    orthogonal lifted from C3⋊F7
ρ24606-3-3-3000000000000-11+21/21-21/21-21/21+21/21-21/2-1-11+21/2    orthogonal lifted from C3⋊F7
ρ2560-3-36-3000000000000-11-21/21-21/2-1-11+21/21+21/21-21/21+21/2    orthogonal lifted from C3⋊F7
ρ2660-36-3-3000000000000-1-11-21/21+21/21-21/2-11-21/21+21/21+21/2    orthogonal lifted from C3⋊F7
ρ2760-36-3-3000000000000-1-11+21/21-21/21+21/2-11+21/21-21/21-21/2    orthogonal lifted from C3⋊F7

Smallest permutation representation of C324F7
On 63 points
Generators in S63
(1 43 22)(2 44 23)(3 45 24)(4 46 25)(5 47 26)(6 48 27)(7 49 28)(8 50 29)(9 51 30)(10 52 31)(11 53 32)(12 54 33)(13 55 34)(14 56 35)(15 57 36)(16 58 37)(17 59 38)(18 60 39)(19 61 40)(20 62 41)(21 63 42)
(1 15 8)(2 16 9)(3 17 10)(4 18 11)(5 19 12)(6 20 13)(7 21 14)(22 36 29)(23 37 30)(24 38 31)(25 39 32)(26 40 33)(27 41 34)(28 42 35)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)
(1 2 3 4 5 6 7)(8 9 10 11 12 13 14)(15 16 17 18 19 20 21)(22 23 24 25 26 27 28)(29 30 31 32 33 34 35)(36 37 38 39 40 41 42)(43 44 45 46 47 48 49)(50 51 52 53 54 55 56)(57 58 59 60 61 62 63)
(2 4 3 7 5 6)(8 15)(9 18 10 21 12 20)(11 17 14 19 13 16)(22 43)(23 46 24 49 26 48)(25 45 28 47 27 44)(29 57)(30 60 31 63 33 62)(32 59 35 61 34 58)(36 50)(37 53 38 56 40 55)(39 52 42 54 41 51)

G:=sub<Sym(63)| (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (2,4,3,7,5,6)(8,15)(9,18,10,21,12,20)(11,17,14,19,13,16)(22,43)(23,46,24,49,26,48)(25,45,28,47,27,44)(29,57)(30,60,31,63,33,62)(32,59,35,61,34,58)(36,50)(37,53,38,56,40,55)(39,52,42,54,41,51)>;

G:=Group( (1,43,22)(2,44,23)(3,45,24)(4,46,25)(5,47,26)(6,48,27)(7,49,28)(8,50,29)(9,51,30)(10,52,31)(11,53,32)(12,54,33)(13,55,34)(14,56,35)(15,57,36)(16,58,37)(17,59,38)(18,60,39)(19,61,40)(20,62,41)(21,63,42), (1,15,8)(2,16,9)(3,17,10)(4,18,11)(5,19,12)(6,20,13)(7,21,14)(22,36,29)(23,37,30)(24,38,31)(25,39,32)(26,40,33)(27,41,34)(28,42,35)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56), (1,2,3,4,5,6,7)(8,9,10,11,12,13,14)(15,16,17,18,19,20,21)(22,23,24,25,26,27,28)(29,30,31,32,33,34,35)(36,37,38,39,40,41,42)(43,44,45,46,47,48,49)(50,51,52,53,54,55,56)(57,58,59,60,61,62,63), (2,4,3,7,5,6)(8,15)(9,18,10,21,12,20)(11,17,14,19,13,16)(22,43)(23,46,24,49,26,48)(25,45,28,47,27,44)(29,57)(30,60,31,63,33,62)(32,59,35,61,34,58)(36,50)(37,53,38,56,40,55)(39,52,42,54,41,51) );

G=PermutationGroup([[(1,43,22),(2,44,23),(3,45,24),(4,46,25),(5,47,26),(6,48,27),(7,49,28),(8,50,29),(9,51,30),(10,52,31),(11,53,32),(12,54,33),(13,55,34),(14,56,35),(15,57,36),(16,58,37),(17,59,38),(18,60,39),(19,61,40),(20,62,41),(21,63,42)], [(1,15,8),(2,16,9),(3,17,10),(4,18,11),(5,19,12),(6,20,13),(7,21,14),(22,36,29),(23,37,30),(24,38,31),(25,39,32),(26,40,33),(27,41,34),(28,42,35),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)], [(1,2,3,4,5,6,7),(8,9,10,11,12,13,14),(15,16,17,18,19,20,21),(22,23,24,25,26,27,28),(29,30,31,32,33,34,35),(36,37,38,39,40,41,42),(43,44,45,46,47,48,49),(50,51,52,53,54,55,56),(57,58,59,60,61,62,63)], [(2,4,3,7,5,6),(8,15),(9,18,10,21,12,20),(11,17,14,19,13,16),(22,43),(23,46,24,49,26,48),(25,45,28,47,27,44),(29,57),(30,60,31,63,33,62),(32,59,35,61,34,58),(36,50),(37,53,38,56,40,55),(39,52,42,54,41,51)]])

Matrix representation of C324F7 in GL8(𝔽43)

136000000
2541000000
00255050
00025505
003838400038
00500255
003803838400
000380383840
,
417000000
181000000
00100000
00010000
00001000
00000100
00000010
00000001
,
10000000
01000000
00424242424242
00100000
00010000
00001000
00000100
00000010
,
370000000
226000000
00100000
00000001
00000100
00010000
00424242424242
00000010

G:=sub<GL(8,GF(43))| [1,25,0,0,0,0,0,0,36,41,0,0,0,0,0,0,0,0,2,0,38,5,38,0,0,0,5,2,38,0,0,38,0,0,5,5,40,0,38,0,0,0,0,5,0,2,38,38,0,0,5,0,0,5,40,38,0,0,0,5,38,5,0,40],[41,18,0,0,0,0,0,0,7,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,42,1,0,0,0,0,0,0,42,0,1,0,0,0,0,0,42,0,0,1,0,0,0,0,42,0,0,0,1,0,0,0,42,0,0,0,0,1,0,0,42,0,0,0,0,0],[37,22,0,0,0,0,0,0,0,6,0,0,0,0,0,0,0,0,1,0,0,0,42,0,0,0,0,0,0,1,42,0,0,0,0,0,0,0,42,0,0,0,0,0,1,0,42,0,0,0,0,0,0,0,42,1,0,0,0,1,0,0,42,0] >;

C324F7 in GAP, Magma, Sage, TeX

C_3^2\rtimes_4F_7
% in TeX

G:=Group("C3^2:4F7");
// GroupNames label

G:=SmallGroup(378,51);
// by ID

G=gap.SmallGroup(378,51);
# by ID

G:=PCGroup([5,-2,-3,-3,-3,-7,182,723,8104,1359]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^3=c^7=d^6=1,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,b*c=c*b,d*b*d^-1=b^-1,d*c*d^-1=c^5>;
// generators/relations

Export

Character table of C324F7 in TeX

׿
×
𝔽